成人激情在线视频_成人免费在线视频观看_国产日韩视频在线观看_国产精品综合网_www.jizzjizz.com_国产成人精品久久久

Product Center

產品中心

當前位置:首頁  >  產品中心  >  氣體濃度控制  >  動物低氧濃度控制實驗艙  >  OX-100大號動物低氧實驗系統

大號動物低氧實驗系統

簡要描述:塔望科技提供全系列的動物實驗用低/高氧控制產品,包括恒定濃度控制的低氧動物箱、高氧動物箱、可編程的間歇氧濃度控制系統、帶緩沖艙的手套低氧箱等。整套低氧/高氧實驗箱裝置主要由氧氣控制器和動物實驗箱兩部分組成。另可提供多種不同的氣體控制器,滿足不同實驗O2、CO2、NO、CO、O3等氣體濃度控制的需求。

  • 產品型號:OX-100
  • 廠商性質:生產廠家
  • 更新時間:2026-01-20
  • 訪  問  量:2051

詳細介紹

品牌其他品牌產地類別國產
應用領域醫療衛生

產品描述

塔望科技提供全系列的動物實驗用低/高氧控制產品,包括恒定濃度控制的低氧動物箱、高氧動物箱、可編程的間歇氧濃度控制系統、帶緩沖艙的手套低氧箱等。整套低氧/高氧實驗箱裝置主要由氧氣控制器和動物實驗箱兩部分組成。另可提供多種不同的氣體控制器,滿足不同實驗O2、CO2、NO、CO、O3等氣體濃度控制的需求。

Ox-100動物低氧實驗系統可以控制動物實驗箱內持續低氧的環境,用以制造相關的低氧實驗模型。用戶可自由設置所需要的濃度和實驗持續時間,所有的設置通過控制主機觸摸屏完成,人性化設計,操作簡便。

Ox-100動物低氧實驗系統監測指標全面,動物低氧艙內具有集成化的傳感器模塊,內置溫度、濕度、氧氣、二氧化碳傳感器。可以實時監測動物低氧艙內的環境。系統通過閉環反饋控制,根據動物低氧艙內的氧濃度實時反饋控制,使動物實驗低氧數據更準確,避免了控制型濃度輸出和低氧艙內濃度不一致的情況。Ox-100動物低氧實驗系統具有優良的控制性能,持續低氧實驗時,氧濃度的誤差為0.1%

Ox-100動物低氧實驗系統提供不同尺寸的動物低氧箱,默認低氧箱可放置1個大鼠籠(或2個小鼠籠),同時提供大號規格,可容納2個大鼠籠和4個大鼠籠。如需其它規格,可提供定制。

如需高氧實驗,請選擇型號Ox-100HE

產品特點及參數

1. 為動物低氧實驗模型的建立提供穩定的低氧環境

2. 按照設定氣體濃度自動配比氣體,維持恒定的氧氣濃度環境。無需在箱體外混合比例氣體,實驗氧濃度的準確,節省氣源

3. 艙體采用全透明PMMA材質,防止由于光線影響動物生物節律

4. 7英寸大屏觸摸屏控制,人性化界面,操作簡單

5. 監測參數:溫度、濕度、氧氣O2濃度、二氧化碳濃度

6. 控制精度:±0.1%

7. 非色散紅外(NDIR)二氧化碳傳感器,測量范圍:05000ppm

8. 進口電化學氧氣O2濃度檢測器,測量范圍:0-25%vol,線性度好,檢測準確、使用壽命長。具有溫度補償機制

9. 溫度檢測:進口高精度溫度傳感器

10. 氧氣濃度變化動態曲線,直觀了解氧氣濃度變化的過程

11. 具有定時功能,實驗完成,自動恢復常氧狀態,并伴有聲音提示

12. 氧氣濃度自動校準:通過控制器對傳感器快速校準

13. *的氣體混合及循環機制,保證箱體內氣體濃度的均一

14. 高性能電磁閥,性能穩定,超長壽命

15. 艙體尺寸有多種選擇,可靈活搭配。也可根據實驗要求進行定制



ProOx-100動物間歇低氧實驗系統多功能控制


可進行間歇低氧實驗(CIH)、急性缺氧實驗、慢性缺氧實驗、高氧/低氧交替實驗



大號動物低氧實驗系統


應用領域

肺動脈高壓、腎臟疾病研究、腫瘤研究、心血管疾病研究、視網膜病變、運動醫學研究、OSAHS、腦發育與神經生物學、干細胞研究、醫學研究等

型號說明


名稱

型號

說明

單位

動物低氧實驗系統

Ox-100

恒定氧控制,低氧

動物氧濃度實驗系統

Ox-100HE

恒定氧控制,低氧/高氧

動物間歇低氧實驗系統

ProOx-100

恒定氧控制/間歇氧控制,低氧

動物間歇氧濃度實驗系統

ProOx-100HE

恒定氧控制/間歇氧控制,低氧/高氧


艙體型號(可選擇不同尺寸的低氧艙)

名稱

型號

說明

單位

動物實驗艙體小號

OxC-S

大鼠籠x1

動物實驗艙體中號

OxC-M

大鼠籠x2

動物實驗艙體大號

OxC-L

大鼠籠x4

動物實驗艙體特大號

OxC-XL

大鼠籠x8

動物實驗艙體-CIH

OxC-CIH

36只小鼠

手套操作箱

Gl-700

700L


*我公司可提供3Q驗證,根據客戶的特殊應用、特殊需求提供功能定制服務,也可以提供相關的實驗服務,詳情請來電問詢

引用文獻

[1] Drekolia M K, Mettner J, Wang D, et al. Cystine import and oxidative catabolism fuel vascular growth and repair via nutrient-responsive histone acetylation[J]. Cell Metabolism (IF 30.9), 2025.

[2] Wu L W, Chen M, Jiang C Y, et al. Inactivation of AXL in Cardiac Fibroblasts Alleviates Right Ventricular Remodeling in Pulmonary Hypertension[J]. Advanced Science (IF 14.1), 2025: e08995.

[3] Lei R, Gu M, Li J, et al. Lipoic acid/trometamol assembled hydrogel as injectable bandage for hypoxic wound healing at high altitude[J]. Chemical Engineering Journal (IF 13.4), 2024, 489: 151499.

[4] Li Z, Li H, Qiao W, et al. Multi-omics dissection of high TWAS-active endothelial pathogenesis in pulmonary arterial hypertension: bridging single-cell heterogeneity, machine learning-driven biomarkers, and developmental reprogramming[J]. International Journal of Surgery (IF 10.1), 10.1097.

[5] Pei Y, Huang L, Wang T, et al. Bone marrow mesenchymal stem cells loaded into hydrogel/nanofiber composite scaffolds ameliorate ischemic brain injury[J]. Materials Today Advances (IF 10), 2023, 17: 100349.

[6] Wang Q, Liu J, Li R, et al. Macrophage κ-opioid receptor inhibits hypoxic pulmonary hypertension progression and right heart dysfunction via an SCD1-dependent anti-inflammatory response[J]. Genes & Diseases (IF 9.4), 2025: 101604.

[7] Wang Y, Zhang R, Chen Q, et al. PPARγ Agonist Pioglitazone Prevents Hypoxia-induced Cardiac Dysfunction by Reprogramming Glucose Metabolism[J]. International Journal of Biological Sciences, 2024, 20(11): 4297.

[8] Wang Y, Shen P, Wu Z, et al. Plasma Proteomic Profiling Reveals ITGA2B as a key regulator of heart health in high-altitude settlers[J]. Genomics, Proteomics & Bioinformatics, 2025: qzaf030.

[9] Lan Y, Zhao S, Song Y, et al. Physicochemical properties of selenized quinoa protein hydrolysate and its regulatory effects on neuroinflammation and gut microbiota in hypoxic mice[J]. Journal of Future Foods, 2025.

[10] Pan Z, Yao Y, Liu X, et al. Nr1d1 inhibition mitigates intermittent hypoxia-induced pulmonary hypertension via Dusp1-mediated Erk1/2 deactivation and mitochondrial fission attenuation[J]. Cell Death Discovery, 2024, 10(1): 459.

[11] Zhou Y, Ni Z, Liu J, et al. Gut Microbiota‐Associated Metabolites Affected the Susceptibility to Heart Health Abnormality in Young Migrants at High‐Altitude: Gut Microbiota and Associated Metabolites Impart Heart Health in Plateau[C]//Exploration. 2025: 20240332.

[12] Li C, Zhao Z, Jin J, et al. NLRP3-GSDMD-dependent IL-1β Secretion from Microglia Mediates Learning and Memory Impairment in a Chronic Intermittent Hypoxia-induced Mouse Model[J]. Neuroscience, 2024, 539: 51-65.

[13] Yang W, Li M, Ding J, et al. High-altitude hypoxia exposure inhibits erythrophagocytosis by inducing macrophage ferroptosis in the spleen[J]. Elife, 2024, 12: RP87496.

[14] You Z, Huang Q, Zeng L, et al. Rab26 promotes hypoxia-induced hyperproliferation of PASMCs by modulating the AT1R-STAT3-YAP axis[J]. Cellular and Molecular Life Sciences, 2025, 82(1): 1-16.

[15] Pei C, Shen Z, Wu Y, et al. Eleutheroside B Pretreatment Attenuates Hypobaric Hypoxia‐Induced High‐Altitude Pulmonary Edema by Regulating Autophagic Flux via the AMPK/mTOR Pathway[J]. Phytotherapy Research, 2024, 38(12): 5657-5671.

[16] Duan H, Han Y, Zhang H, et al. Eleutheroside B Ameliorates Cardiomyocytes Necroptosis in High-Altitude-Induced Myocardial Injury via Nrf2/HO-1 Signaling Pathway[J]. Antioxidants, 2025, 14(2): 190.

[17] Song J, Zheng J, Li Z, et al. Sulfur dioxide inhibits mast cell degranulation by sulphenylation of galectin-9 at cysteine 74[J]. Frontiers in Immunology, 2024, 15: 1369326.

[18] Jia N, Shen Z, Zhao S, et al. Eleutheroside E from pre-treatment of Acanthopanax senticosus (Rupr. etMaxim.) Harms ameliorates high-altitude-induced heart injury by regulating NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 pathway[J]. International Immunopharmacology, 2023, 121: 110423.

[19] Huang Q, Han X, Li J, et al. Intranasal Administration of Acetaminophen-Loaded Poly (lactic-co-glycolic acid) Nanoparticles Increases Pain Threshold in Mice Rapidly Entering High Altitudes[J]. Pharmaceutics, 2025, 17(3): 341.

[20] Wu Y, Tang Z, Du S, et al. Oral quercetin nanoparticles in hydrogel microspheres alleviate high-altitude sleep disturbance based on the gut-brain axis[J]. International Journal of Pharmaceutics, 2024, 658: 124225.

[21] Zhou Z, Zhao Q, Huang Y, et al. Berberine ameliorates chronic intermittent hypoxia‐induced cardiac remodelling by preserving mitochondrial function, role of SIRT6 signalling[J]. Journal of Cellular and Molecular Medicine, 2024, 28(12): e18407.

[22] Shang W, Huang Y, Xu Z, et al. The impact of a high-carbohydrate diet on the cognitive behavior of mice in a low-pressure, low-oxygen environment[J]. Food & Function, 2025, 16(3): 1116-1129.

[23] Pei C, Jia N, Wang Y, et al. Notoginsenoside R1 protects against hypobaric hypoxia-induced high-altitude pulmonary edema by inhibiting apoptosis via ERK1/2-P90rsk-BAD ignaling pathway[J]. European Journal of Pharmacology, 2023, 959: 176065.

[24] Xie L, Wu Q, Huang H, et al. Neuroregulation of histamine of circadian rhythm disorder induced by chronic intermittent hypoxia[J]. European Journal of Pharmacology, 2025: 177662.

[25] Ding Y, Liu W, Zhang X, et al. Bicarbonate-Rich Mineral Water Mitigates Hypoxia-Induced Osteoporosis in Mice via Gut Microbiota and Metabolic Pathway Regulation[J]. Nutrients, 2025, 17(6): 998.

[26] Gu N, Shen Y, He Y, et al. Loss of m6A demethylase ALKBH5 alleviates hypoxia-induced pulmonary arterial hypertension via inhibiting Cyp1a1 mRNA decay[J]. Journal of Molecular and Cellular Cardiology, 2024.

[27] Luan X, Zhu D, Hao Y, et al. Qibai Pingfei Capsule ameliorated inflammation in chronic obstructive pulmonary disease (COPD) via HIF-1 α/glycolysis pathway mediated of BMAL1[J]. International Immunopharmacology, 2025, 144: 113636.

[28] Jiang H, Lu C, Wu H, et al. Decreased cold‐inducible RNA‐binding protein (CIRP) binding to GluRl on neuronal membranes mediates memory impairment resulting from prolonged hypobaric hypoxia exposure[J]. CNS Neuroscience & Therapeutics, 2024, 30(9): e70059.

[29] Chang P, Xu M, Zhu J, et al. Pharmacological Inhibition of Mitochondrial Division Attenuates Simulated High‐Altitude Exposure‐Induced Memory Impairment in Mice: [30] Involvement of Inhibition of Microglia‐Mediated Synapse Elimination[J]. CNS Neuroscience & Therapeutics, 2025, 31(6): e70473.

[30] Liu C, Qu D, Li C, et al. miR‐448‐3p/miR‐1264‐3p Participates in Intermittent Hypoxic Response in Hippocampus by Regulating Fam76b/hnRNPA2B1[J]. CNS Neuroscience & Therapeutics, 2025, 31(2): e70239.

[31] Wu L W, Chen M, Jiang D J, et al. TCF7 enhances pulmonary hypertension by boosting stressed natural killer cells and their interaction with pulmonary arterial smooth muscle cells[J]. Respiratory Research, 2025, 26(1): 202.

[32] Xie L, Wu Q, Huang H, et al. Neuroregulation of histamine of circadian rhythm disorder induced by chronic intermittent hypoxia[J]. European Journal of Pharmacology, 2025: 177662.

[33] Cai S, Li Z, Bai J, et al. Optimized oxygen therapy improves sleep deprivation-induced cardiac dysfunction through gut microbiota[J]. Frontiers in Cellular and Infection Microbiology, 2025, 15: 1522431.

[34] Wang X, Xie Y, Niu Y, et al. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting[J]. Frontiers in Cellular Neuroscience, 2023, 17: 1189348.

[35] He Y, Wang Y, Duan H, et al. Pharmacological targeting of ferroptosis in hypoxia-induced pulmonary edema: therapeutic potential of ginsenoside Rg3 through activation of the PI3K/AKT pathway[J]. Frontiers in Pharmacology, 2025, 16: 1644436.

[36] Guo Y, Qin J, Sun R, et al. Molecular hydrogen promotes retinal vascular regeneration and attenuates neovascularization and neuroglial dysfunction in oxygen-induced retinopathy mice[J]. Biological Research, 2024, 57.

[37] Liu L, Zhang J, Song S, et al. Paraventricular nucleus neurons: important regulators of respiratory movement in mice with chronic intermittent hypoxia[J]. Annals of Medicine, 2025, 57(1): 2588664.

[38] Ma Q, Ma J, Cui J, et al. Oxygen enrichment protects against intestinal damage and gut microbiota disturbance in rats exposed to acute high-altitude hypoxia[J]. Frontiers in Microbiology, 2023, 14.

[39] Lan J, Lin J, Guo Y, et al. Sequencing and bioinformatics analysis of exosome-derived miRNAs in mouse models of pancreatic injury induced by OSA[J]. Frontiers in Physiology, 2025, 16: 1712442.

[40] Feng X, Li C, Zhang W, et al. Mechanism of retinal angiogenesis induced by HIF-1α and HIF-2α under hyperoxic conditions[J]. Scientific Reports, 2025, 15(1): 36049.

[41] Yao Y, Chen Y, Li Y, et al. TGM2 Enhances Hypobaric Hypoxia-mediated Brain Injury Via Regulating NLRP3/GSDMD Signaling[J]. Neurochemical Research, 2025, 50(6): 1-11.

[42] Yang A, Guo L, Zhang Y, et al. MFN2-mediated mitochondrial fusion facilitates acute hypobaric hypoxia-induced cardiac dysfunction by increasing glucose catabolism and ROS production[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2023: 130413.

[43] Chu H, Jiang W, Zuo N, et al. Astrocyte activation: A key mediator underlying chronic intermittent hypoxia-induced cognitive dysfunction[J]. Sleep Medicine, 2025: 106692.

[44] Xu A, Huang F, Chen E, et al. Hyperbaric oxygen therapy attenuates heatstroke-induced hippocampal injury by inhibiting microglial pyroptosis[J]. International Journal of Hyperthermia, 2024, 41(1): 2382162.

[45] Zhang Z, Zheng X, He Y, et al. Hyperbaric oxygen ameliorates neuroinflammation in heat-stressed BV-2 microglial cells: potential involvement of EAAT2 regulation[J]. International Journal of Hyperthermia, 2025, 42(1): 2583133.

[46] Jinyu F, Huaicun L, Yanfei Z, et al. Nogo-A Protein Mediates Oxidative Stress and Synaptic Damage Induced by High-altitude Hypoxia in the Rat Hippocampus[J]. 2024.

[47] Su L, Ni T, Fan R, et al. An attention to the effect of intravitreal injection on the controls of oxygen-induced retinopathy mouse model[J]. Experimental Eye Research, 2024, 248: 110094.

[48] Xu Y, Xu J, Li J, et al. Interplay of HIF-1α, SMAD2, and VEGF signaling in hypoxic renal environments: impact on macrophage polarization and renoprotection[J]. Renal Failure, 2025, 47(1): 2561784.

[49] Zhang D, Bian W, Gao Z. Impact of Obstructive Sleep Apnea on Endometrial Function in Female Rats: Mechanism Exploration[J]. Nature and Science of Sleep, 2025: 2485-2499.

[50] Zhang N, Wei F, Ning S, et al. PPARγ Agonist Rosiglitazone and Antagonist GW9662: Antihypertensive Effects on Chronic Intermittent Hypoxia-Induced Hypertension in Rats[J]. Journal of Cardiovascular Translational Research, 2024: 1-13.

[51] Zhang Y, Zhang A, Yang J, et al. Hypoxic Mesenchymal Stem Cell Exosome‐Derived SLC25A3 Ameliorates Bronchopulmonary Dysplasia by Modulating Macrophage Polarization and Oxidative Stress[J]. Cell Biochemistry and Function, 2025, 43(12): e70152.

[52] Lan J, Wang Y, Liu C, et al. Genome-wide analysis of m6A-modified circRNAs in the mouse model of myocardial injury induced by obstructive sleep apnea[J]. BMC Pulmonary Medicine, 2025, 25(1): 158.

[53] Zhang L, Liu X, Wei Q, et al. Arginine attenuates chronic mountain sickness in rats via microRNA-144-5p[J]. Mammalian Genome, 2023, 34(1): 76-89.

[54] Wei J, Hu M, Chen X, et al. Hypobaric Hypoxia Aggravates Renal Injury by Inducing the Formation of Neutrophil Extracellular Traps through the NF-κB Signaling Pathway[J]. Current Medical Science, 2023: 1-9.

[55] Zhang L, Li J, Wan Q, et al. Intestinal stem cell-derived extracellular vesicles ameliorate necrotizing enterocolitis injury[J]. Molecular and Cellular Probes, 2025, 79: 101997.

[56] Liao Y, Ke B, Long X, et al. Abnormalities in the SIRT1-SIRT3 axis promote myocardial ischemia-reperfusion injury through ferroptosis caused by silencing the PINK1/Parkin signaling pathway[J]. BMC Cardiovascular Disorders, 2023, 23(1): 582.

[57] Wang M, Wen W, Chen Y, et al. TRPC5 channel participates in myocardial injury in chronic intermittent hypoxia[J]. Clinics, 2024, 79: 100368.

[58] Li J, Ye J. Chronic intermittent hypoxia induces cognitive impairment in Alzheimer’s disease mouse model via postsynaptic mechanisms[J]. Sleep and Breathing, 2024: 1-9.

[59] Binbin L I, Haizhen L I, Houhuang C, et al. Utilizing Hyperbaric Oxygen Therapy to Improve Cognitive Function in Patients With Alzheimer’s Disease by Activating Autophagy-Related Signaling Pathways[J]. Physiological Research, 2025, 74(1): 141.

[60] Han J, Wang L, Wang L, et al. 5-Hydroxytryptamine Limits Pulmonary Arterial Hypertension Progression by Regulating Th17/Treg Balance[J]. Biological and Pharmaceutical Bulletin, 2025, 48(5): 555-562.

[61] Nan L, Kaisi F, Mengzhen Z, et al. miR-375-3p targets YWHAB to attenuate intestine injury in neonatal necrotizing enterocolitis[J]. Pediatric Surgery International, 2024, 40(1): 63.

[62] Liu B, Zheng W, Tang C, et al. Scutellarein-containing novel formula attenuates hypoxia through inhibiting apoptosis[J]. 2025.







產品咨詢

留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結果(填寫阿拉伯數字),如:三加四=7
021-51537683
歡迎您的咨詢
我們將竭盡全力為您用心服務
502153910
關注微信
版權所有 © 2026 上海塔望智能科技有限公司  備案號:滬ICP備18011326號-4
主站蜘蛛池模板: 撕开她情趣内裤让她呻吟视频 | 国产在线高清视频 | 可以看的毛片 | 青青草原亚洲视频 | 午夜亚洲国产 | www.久久久久| 亚洲黄色精品 | 欧美老司机 | 亚洲无人区码一码二码三码 | 国产成人精品久久久 | 色欧美片视频在线观看 | 欧美一区二区三区免费看 | 成人免费毛片网站 | 国产视频一二 | 亚洲精品在线视频 | 一区精品在线观看 | 国内免费av| 日韩在线观看视频免费 | 亚洲精品一区在线观看 | 欧美视频三区 | 成人日批视频 | 亚洲最大激情网 | 日韩精品六区 | 精品一区二区三区免费 | 黄色网址在线播放 | 在线国产日韩 | 久久精品操 | 国内成人在线 | 成人黄色免费网 | 97成人超碰 | 欧美日韩视频免费观看 | 久久麻豆精品 | 精品一区二区三区日韩 | 超碰在线国产97 | 日本免费三片在线播放 | 亚洲一区二区三区精品视频 | 日本人亚洲人jjzzjjz | 亚洲区av| 中文字幕在线观看1 | 精品手机在线视频 | 伊人网视频在线 |